Upper Bounds on the Size of Quantum Codes

نویسندگان

  • Alexei E. Ashikhmin
  • Simon Litsyn
چکیده

This paper is concerned with bounds for quantum error-correcting codes. Using the quantum MacWilliams identities, we generalize the linear programming approach from classical coding theory to the quantum case. Using this approach, we obtain Singleton-type, Hamming-type, and the first linearprogramming-type bounds for quantum codes. Using the special structure of linear quantum codes, we derive an upper bound that is better than both Hamming and the first linear programming bounds on some subinterval of rates.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Constacyclic Codes over Group Ring (Zq[v])/G

Recently, codes over some special finite rings especially chain rings have been studied. More recently, codes over finite non-chain rings have been also considered. Study on codes over such rings or rings in general is motivated by the existence of some special maps called Gray maps whose images give codes over fields. Quantum error-correcting (QEC) codes play a crucial role in protecting quantum ...

متن کامل

A Note on Quantum Hamming Bound

Quantum stabilizer codes are a known class of quantum codes that can protect quantum information against noise and decoherence. Stabilizer codes can be constructed from self-orthogonal or dualcontaining classical codes, see for example [3, 8, 11] and references therein. It is desirable to study upper and lower bounds on the minimum distance of classical and quantum codes, so the computer search...

متن کامل

ar X iv : m at h / 06 06 73 4 v 1 [ m at h . M G ] 2 8 Ju n 20 06 CODES IN SPHERICAL CAPS

We consider bounds on codes in spherical caps and related problems in geometry and coding theory. An extension of the Delsarte method is presented that relates upper bounds on the size of spherical codes to upper bounds on codes in caps. Several new upper bounds on codes in caps are derived. Applications of these bounds to estimates of the kissing numbers and one-sided kissing numbers are consi...

متن کامل

Codes in spherical caps

We consider bounds on codes in spherical caps and related problems in geometry and coding theory. An extension of the Delsarte method is presented that relates upper bounds on the size of spherical codes to upper bounds on codes in caps. Several new upper bounds on codes in caps are derived. Applications of these bounds to estimates of the kissing numbers and one-sided kissing numbers are consi...

متن کامل

Quantum error detection II: Bounds

In Part I of this paper we formulated the problem of error detection with quantum codes on the completely depolarized channel and gave an expression for the probability of undetected error via the weight enumerators of the code. In this part we show that there exist quantum codes whose probability of undetected error falls exponentially with the length of the code and derive bounds on this expo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IEEE Trans. Information Theory

دوره 45  شماره 

صفحات  -

تاریخ انتشار 1999